CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact

Author:

Hartinger Markus1,Dumont Marie-Laure2,Ioannides Stathis2,Gosman David1,Spikes Hugh1

Affiliation:

1. Imperial College London, Exhibition Road, London SW72BX, UK

2. SKF Engineering and Research Centre, Niewegein, The Netherlands

Abstract

In this paper a computational fluid dynamics (CFD) approach for solving elastohydrodynamic lubrication using the freely available package OPENFOAM is introduced. The full Navier–Stokes equations are solved, which enables the entire flow domain to be modeled and all gradients inside the lubricated contact to be resolved. The phenomenon of cavitation is taken into account by employing a homogenous equilibrium cavitation model, which maintains a specified cavitation pressure inside the cavitating region. The energy equation used considers the effects of heat conduction and convection, viscous heating, and the heat of evaporation. The developed method has been applied to a series of cases of lubricated metal-on-metal line contact with an entrainment velocity of uent=2.5m∕s, viscosities η0=[0.01,1]Pas, and slide-to-roll ratios SRR=[0,1,2] under both thermal and isothermal conditions. The isothermal results are compared to the Reynolds theory and most results agree very well. Only the high-viscosity pure rolling case shows small differences. The combined effects of temperature, pressure, and shear-thinning are studied for the thermal cases. A temperature-induced shear band occurs in the case of sliding combined with very large viscosity compared to the isothermal case, which results in significant pressure variations across the thickness of the film. The impact of temperature on the friction force is discussed, showing differences of up to −88.5% compared to the isothermal case. The developed method is capable of giving new insights into the physics of elastohydrodynamic lubrication, especially in cases where the usual assumptions of the Reynolds theory break down.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference40 articles.

1. Contact Mechanics

2. On the Coupling of the Elastohydrodynamic Problem;Elcoate;Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.

3. Evaluation of Deflection in Semi-Infinite Bodies by a Differential Method;Evans;Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3