Effects of Oil and Solid Body Temperatures on Elastohydrodynamic Lubrication Film Formation

Author:

Gao Junbin1,Yang Ping1,Li Xinming12ORCID,Jin Xuyang1,Tian Ye1,Cheng Ziyang1,Yan Xu1

Affiliation:

1. School of Mechanical & Automotive Engineering, Qingdao University of Technology, 777 Jialingjiang Road, Qingdao 266520, China

2. Shandong Zhilian Community Bearing Technology Co., Ltd., Liaocheng 252600, China

Abstract

The present study focuses on investigating the influence of oil and solid body temperatures on elastohydrodynamic lubrication (EHL) film formation. Experimental and numerical simulation methods are employed to examine three heating methods: oil and ball heating, disc heating, and entire system heating. A preliminary comparison between the measured results and numerical simulations confirms the impact of heating methods on film formation while validating the availability of the numerical models. Further numerical analysis reveals that in the case of oil and ball heating, the temperature gradient induced by differences in solid body temperatures plays a more significant role in film formation compared to the conventional thermal-viscosity wedge effect caused by EHL film shear. This effect is further amplified at large sliding–rolling ratios and in steel–steel contacts. The overall film formation is primarily governed by the oil inlet temperature, whereas local film formation characterized by a dimple shape is influenced by both thermal gradient effects and thermal-viscosity wedge effects. This study provides valuable insights for selecting appropriate heating methods in experiments as well as understanding how temperature differences affect film formation in practical engineering.

Funder

National Natural Science Foundation of China

Youth Innovation and Technology Support Program of Shandong Province

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3