Fluid-structure interaction modeling of dry wire drawing by coupling OpenFOAM models of lubricant film and metal wire

Author:

Vervaecke M,Fauconnier D,Degroote J

Abstract

Abstract A steady 2D axisymmetric fluid-structure interaction model of dry wire drawing is developed to numerically investigate the interaction between the thin lubricant film and the plastically deforming steel wire. To reduce the computational cost, a layering technique is implemented in the axially moving structure. Additionally, a no-slip condition, imposed on the implemented sliding fluid-structure interaction interface, captures accurately the physics during the plastic deformation of the wire. An Arbitrary-Langrangian-Eulerian cell-centred finite volume solution methodology using pimpleFoam has been adopted to model the fluid, while a Lagrangian cell-centred finite volume solution methodology in foam-Extend executes the structural calculations. Moreover, the Python-based in-house FSI coupling code CoCoNuT performs the coupling of the flow solver and the structural solver by using the quasi- Newton IQN-ILS technique. The stresses with corresponding displacements are shown on the structure side. On the fluid side, the focus is on the behaviour of the loads of the lubricant. Additionally, the evolution of the fluid film thickness and the lubricant flow field are validated in terms of Couette and Poiseuille flow. Finally, the presented multi-physical problem shows a converged solution with a good performance of the IQN-ILS solver.

Publisher

IOP Publishing

Reference38 articles.

1. Plasto-hydrodynamic lubrication (PHD) - application of lubrication theory to metal forming process;Montmitonnet;C.R. Acad. Sci. Paris,2001

2. On the theory of lubrication and its applications to Mr. Beauchamps tower’s experiments, including an experimental determination of the viscosity of olive oil;Reynolds;Philosophical transactions of the Royal Society of London,1886

3. Lubricated elastoplastic contact model for metal forming processes in OpenFOAM;Škurić;Comput. Fluids,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3