An Energy Closure Criterion for Model Reduction of a Kicked Euler–Bernoulli Beam

Author:

Bhattacharyya Suparno1,Cusumano Joseph P.1

Affiliation:

1. Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802

Abstract

Abstract Reduced order models (ROMs) can be simulated with lower computational cost while being more amenable to theoretical analysis. Here, we examine the performance of the proper orthogonal decomposition (POD), a data-driven model reduction technique. We show that the accuracy of ROMs obtained using POD depends on the type of data used and, more crucially, on the criterion used to select the number of proper orthogonal modes (POMs) used for the model. Simulations of a simply supported Euler–Bernoulli beam subjected to periodic impulsive loads are used to generate ROMs via POD, which are then simulated for comparison with the full system. We assess the accuracy of ROMs obtained using steady-state displacement, velocity, and strain fields, tuning the spatiotemporal localization of applied impulses to control the number of excited modes in, and hence the dimensionality of, the system’s response. We show that conventional variance-based mode selection leads to inaccurate models for sufficiently impulsive loading and that this poor performance is explained by the energy imbalance on the reduced subspace. Specifically, the subspace of POMs capturing a fixed amount (say, 99.9%) of the total variance underestimates the energy input and dissipated in the ROM, yielding inaccurate reduced-order simulations. This problem becomes more acute as the loading becomes more spatio-temporally localized (more impulsive). Thus, energy closure analysis provides an improved method for generating ROMs with energetics that properly reflect that of the full system, resulting in simulations that accurately represent the system’s true behavior.

Publisher

ASME International

Subject

General Engineering

Reference43 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3