Abstract
Radar remote sensing of the sea surface for the extraction of ocean surface wave fields requires separating wave and non-wave contributions to the sea surface measurement. Conventional methods of extracting wave information from radar measurements of the sea surface rely on filtering the wavenumber-frequency spectrum using the linear dispersion relationship for ocean surface waves. However, this technique has limitations, e.g., it isn’t suited for the inclusion of non-linear wave features. This study evaluates an alternative method called proper orthogonal decomposition (POD) for the extraction of ocean surface wave fields remotely sensed by marine radar. POD is an empirical and optimal linear method for representing non-linear processes. The method was applied to Doppler velocity data of the sea surface collected using two different radar systems during two different experiments that spanned a variety of environmental conditions. During both experiments, GPS mini-buoys simultaneously collected wave data. The POD method was used to generate phase-resolved wave orbital velocity maps that are statistically evaluated by comparing wave statistics computed from the buoy data to those obtained from these maps. The results show that leading POD modes contain energy associated with the peak wavelength(s) of the measured wave field, and consequently, wave contributions to the radar measurement of the sea surface can be separated based on modes. Wave statistics calculated from optimized POD reconstructions are comparable to those calculated from GPS wave buoys. The accuracy of the wave statistics generated from POD-reconstructed orbital velocity maps was not sensitive to the radar configuration or environmental conditions examined. Further research is needed to determine a rigorous method for selecting modes a priori.
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献