Experimental Implementation of Energy Closure Analysis for Reduced Order Modeling

Author:

Bhattacharyya Suparno1,Cusumano Joseph. P.1

Affiliation:

1. Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802

Abstract

Abstract Reduced order models (ROMs) provide an efficient, kinematically condensed representation of computationally expensive high-dimensional dynamical systems; however, their accuracy depends crucially on the accurate estimation of their dimension. We here demonstrate how the energy closure criterion, developed in our prior work, can be experimentally implemented to accurately estimate the dimension of ROMs obtained using the proper orthogonal decomposition (POD). We examine the effect of using discrete data with and without measurement noise, as will typically be gathered in an experiment or numerical simulation, on estimating the degree of energy closure on a candidate reduced subspace. To this end, we used a periodically kicked Euler–Bernoulli beam with Rayleigh damping as the model system and studied ROMs obtained by applying POD to discrete displacement field data obtained from simulated numerical experiments. An improved method for quantifying the degree of energy closure is presented: the convergence of energy input to or dissipated from the system is obtained as a function of the subspace dimension, and the dimension capturing a predefined percentage of either energy is selected as the ROM dimension. This method was found to be more robust to data discretization error and measurement noise. The data-processing necessary for the experimental application of energy closure analysis is discussed in detail. We show how ROMs formulated from the simulated data using our approach accurately capture the dynamics of the beam for different sets of parameter values.

Publisher

ASME International

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3