Three-Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution

Author:

Martufi Giampaolo1,Di Martino Elena S.2,Amon Cristina H.3,Muluk Satish C.4,Finol Ender A.5

Affiliation:

1. Università degli Studi di Roma Tor Vergata, Via del Politecnico, 1 00133 Roma Italia

2. Department of Civil Engineering, and Centre for Bioengineering Research and Education, University of Calgary, 2500 University Drive Northwest, Calgary, AL, T2N 1N4, Canada

3. Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON, M5S 3G8, Canada

4. Division of Vascular Surgery, Allegheny General Hospital, 320 East North Avenue, South Tower, 14th Floor, Pittsburgh, PA 15212-4772

5. Department of Biomedical Engineering, and Department of Mechanical Engineering, Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213-3890

Abstract

The clinical assessment of abdominal aortic aneurysm (AAA) rupture risk is based on the quantification of AAA size by measuring its maximum diameter from computed tomography (CT) images and estimating the expansion rate of the aneurysm sac over time. Recent findings have shown that geometrical shape and size, as well as local wall thickness may be related to this risk; thus, reliable noninvasive image-based methods to evaluate AAA geometry have a potential to become valuable clinical tools. Utilizing existing CT data, the three-dimensional geometry of nine unruptured human AAAs was reconstructed and characterized quantitatively. We propose and evaluate a series of 1D size, 2D shape, 3D size, 3D shape, and second-order curvature-based indices to quantify AAA geometry, as well as the geometry of a size-matched idealized fusiform aneurysm and a patient-specific normal abdominal aorta used as controls. The wall thickness estimation algorithm, validated in our previous work, is tested against discrete point measurements taken from a cadaver tissue model, yielding an average relative difference in AAA wall thickness of 7.8%. It is unlikely that any one of the proposed geometrical indices alone would be a reliable index of rupture risk or a threshold for elective repair. Rather, the complete geometry and a positive correlation of a set of indices should be considered to assess the potential for rupture. With this quantitative parameter assessment, future research can be directed toward statistical analyses correlating the numerical values of these parameters with the risk of aneurysm rupture or intervention (surgical or endovascular). While this work does not provide direct insight into the possible clinical use of the geometric parameters, we believe it provides the foundation necessary for future efforts in that direction.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3