Biomechanical stress analysis of Type-A aortic dissection at pre-dissection, post-dissection and post-repair states

Author:

Sun Christina,Qin Tongran,Kalyanasundaram Asanish,Elefteriades John,Sun Wei,Liang Liang

Abstract

ABSTRACTAcute type A aortic dissection remains a deadly and elusive condition, with risk factors such as hypertension, bicuspid aortic valves, and genetic predispositions. As existing guidelines for surgical intervention based solely on aneurysm diameter face scrutiny, there is a growing need to consider other predictors and parameters, including wall stress, in assessing dissection risk. Through our research, we aim to elucidate the biomechanical underpinnings of aortic dissection and provide valuable insights into its prediction and prevention.We applied finite element analysis (FEA) to assess stress distribution on a rare dataset comprising computed tomography scans obtained from eight patients at three stages of aortic dissection: pre-dissection (preD), post-dissection (postD), and post-repair (postR). Our findings reveal significant increases in both mean and peak aortic wall stresses during the transition from the preD to postD state, reflecting the mechanical impact of dissection. Surgical repair effectively restores aortic wall stresses to pre-dissection levels across all regions, suggesting its effectiveness in mitigating biomechanical stress. Furthermore, we identified stress concentration regions within the aortic wall that closely correlated with observed dissection borders, offering insights into high-risk areas.This study demonstrates the importance of considering biomechanical factors when assessing aortic dissection risk. Despite some limitations such as uniform wall thickness assumptions and the absence of dynamic blood flow considerations, our patient-specific FEA approach provides valuable mechanistic insights into aortic dissection. These findings hold promise for improving predictive models and informing clinical decisions to enhance patient care.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3