Prediction of Film Cooling by a Row of Holes With a Two-Dimensional Boundary-Layer Procedure

Author:

Scho¨nung B.1,Rodi W.1

Affiliation:

1. Institute of Hydromechanics, University of Karlsruhe, Karlsruhe, Federal Republic of Germany

Abstract

The present paper describes predictions of film cooling by a row of holes. The calculations have been performed by a two-dimensional boundary-layer code with special modifications that account for the basically three-dimensional, elliptic nature of the flow after injection. The elliptic reverse-flow region near the injection is leapt over and new boundary-layer profiles are set up after the blowing region. They take into account the oncoming boundary layer as well as the characteristics of the injected jets. The three dimensionality of the flow, which is very strong near the injection and decreases further downstream, is modeled by so-called dispersion terms, which are added to the two-dimensional boundary-layer equations. These terms describe additional mixing by the laterally nonuniform flow. Information on the modeling of the profiles after injection and of the dispersion terms has been extracted from three-dimensional fully elliptic calculations for specific flow configurations. The modified two-dimensional boundary-layer equations are solved by a forward-marching finite-volume method. A coordinate system is used that stretches with the growth of the boundary layer. The turbulent stresses and heat fluxes are obtained from the k-ε turbulence model. Results are given for flows over flat plates as well as for flows over gas turbine blades for different injection angles, relative spacings, blowing rates, and injection temperatures. The predicted cooling effectiveness and heat transfer coefficients are compared with experimental data and show generally fairly good agreement.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3