Three-Dimensional Flow Prediction and Improvement of Holes Arrangement of a Film-Cooled Turbine Blade Using a Feature-Based Jet Model

Author:

Burdet André1,Abhari Reza S.1

Affiliation:

1. Turbomachinery Laboratory, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology – ETH Zürich, CH-8092 Zürich, Switzerland

Abstract

A feature-based jet model has been proposed for use in three-dimensional (3D) computational fluid dynamics (CFD) prediction of turbine blade film cooling. The goal of the model is to be able to perform computationally efficient flow prediction and optimization of film-cooled turbine blades. The model reproduces in the near-hole region the macroflow features of a coolant jet within a Reynolds-averaged Navier-Stokes framework. Numerical predictions of the 3D flow through a linear transonic film-cooled turbine cascade are carried out with the model, with a low computational overhead. Different cooling holes arrangements are computed, and the prediction accuracy is evaluated versus experimental data. It is shown that the present model provides a reasonably good prediction of the adiabatic film-cooling effectiveness and Nusselt number around the blade. A numerical analysis of the interaction of coolant jets issuing from different rows of holes on the blade pressure side is carried out. It is shown that the upward radial migration of the flow due to the passage secondary flow structure has an impact on the spreading of the coolant and the film-cooling effectiveness on the blade surface. Based on this result, a new arrangement of the cooling holes for the present case is proposed that leads to a better spanwise covering of the coolant on the blade pressure side surface.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3