Modeling of Film Cooling—Part II: Model for Use in Three-Dimensional Computational Fluid Dynamics

Author:

Burdet André1,Abhari Reza S.1,Rose Martin G.1

Affiliation:

1. Turbomachinery Laboratory, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology – ETH Zürich, CH-8092 Zürich, Switzerland

Abstract

Abstract Computational fluid dynamics (CFD) has recently been used for the simulation of the aerothermodynamics of film cooling. The direct calculation of a single cooling hole requires substantial computational resources. A parametric study, for the optimization of the cooling system in real engines, is much too time consuming due to the large number of grid nodes required to cover all injection holes and plenum chambers. For these reasons, a hybrid approach is proposed, based on the modeling of the near film-cooling hole flow, tuned using experimental data, while computing directly the flow field in the blade-to-blade passage. A new injection film-cooling model is established, which can be embedded in a CFD code, to lower the central processing unit (CPU) cost and to reduce the simulation turnover time. The goal is to be able to simulate film-cooled turbine blades without having to explicitly mesh inside the holes and the plenum chamber. The stability, low CPU overhead level (1%) and accuracy of the proposed CFD-embedded film-cooling model are demonstrated in the ETHZ steady film-cooled flat-plate experiment presented in Part I (Bernsdorf, Rose, and Abhari, 2006, ASME J. Turbomach., 128, pp. 141–149) of this two-part paper. The prediction of film-cooling effectiveness using the CFD-embedded model is evaluated.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3