Uncertainty Quantification for Additive Manufacturing Process Improvement: Recent Advances

Author:

Mahadevan Sankaran1,Nath Paromita1,Hu Zhen2

Affiliation:

1. Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235

2. Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, Dearborn, MI 48128

Abstract

Abstract This paper reviews the state of the art in applying uncertainty quantification (UQ) methods to additive manufacturing (AM). Physics-based as well as data-driven models are increasingly being developed and refined in order to support process optimization and control objectives in AM, in particular to maximize the quality and minimize the variability of the AM product. However, before using these models for decision-making, a fundamental question that needs to be answered is to what degree the models can be trusted, and consider the various uncertainty sources that affect their prediction. UQ in AM is not trivial because of the complex multiphysics, multiscale phenomena in the AM process. This article reviews the literature on UQ methodologies focusing on model uncertainty, discusses the corresponding activities of calibration, verification, and validation, and examines their applications reported in the AM literature. The extension of current UQ methodologies to additive manufacturing needs to address multiphysics, multiscale interactions, increasing presence of data-driven models, high cost of manufacturing, and complexity of measurements. The activities that need to be undertaken in order to implement verification, calibration, and validation for AM are discussed. Literature on using the results of UQ activities toward AM process optimization and control (thus supporting maximization of quality and minimization of variability) is also reviewed. Future research needs both in terms of UQ and decision-making in AM are outlined.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Reference184 articles.

1. Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities;Int. J. Adv. Manuf. Technol.,2017

2. Standard for Models and Simulation-NASA Technical Standard;National Aeronautics and Space Administration,2008

3. Separation of Aleatory and Epistemic Uncertainty in Probabilistic Model Validation;Reliab. Eng. Syst. Saf.,2016

4. Separating the Contributions of Variability and Parameter Uncertainty in Probability Distributions;Reliab. Eng. Syst. Saf.,2013

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3