Full-field validation of finite cell method computations on wire arc additive manufactured components

Author:

Tröger Jendrik-Alexander,Sartorti Roman,Garhuom Wadhah,Düster Alexander,Hartmann Stefan

Abstract

AbstractWire arc additive manufacturing enables the production of components with high deposition rates and the incorporation of multiple materials. However, the manufactured components possess a wavy surface, which is a major difficulty when it comes to simulating the mechanical behavior of wire arc additively manufactured components and evaluation of experimental full-field measurements. In this work, the wavy surface of a thick-walled tube is measured with a portable 3D scanning technique first. Then, the surface contour is considered numerically using the finite cell method. There, hierarchic shape functions based on integrated Legendre polynomials are combined with a fictitious domain approach to simplify the discretization process. This enables a hierarchic p-refinement process to study the convergence of the reaction quantities and the surface strains under tension–torsion load. Throughout all considerations, uncertainties arising from multiple sources are assessed. This includes the material parameter identification, the geometry measurement, and the experimental analysis. When comparing experiment and numerical simulation, the in-plane surface strains are computed based on displacement data using radial basis functions as ansatz for global surface interpolation. It turns out that the finite cell method is a suitable numerical technique to consider the wavy surface encountered for additively manufactured components. The numerical results of the mechanical response of thick-walled tubes subjected to tension–torsion load demonstrate good agreement with real experimental data, particularly when employing higher-order polynomials. This agreement persists even under the consideration of the inherent uncertainties stemming from multiple sources, which are determined by Gaussian error propagation.

Funder

Technische Universität Clausthal

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3