Design and Reconfiguration Analysis of the Trunk Mechanism for a Reconfigurable Wheeled Mobile Platform

Author:

Teng Xinyu11,Li Yezhuo222,Liu Yang11,Yao Yan-an34

Affiliation:

1. Beijing Jiaotong University School of Mechanical, Electronic and Control Engineering, , Beijing 100044 , China

2. Beijing Jiaotong University School of Mechanical, Electronic and Control Engineering, , Beijing 100044 , China ; Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, , Beijing 100044 , China

3. Beijing Jiaotong University School of Mechanical, Electronic and Control Engineering, , Beijing 100044 , China ; , Beijing 100105 , China

4. CAFA Visual Art Innovation Institute School of Mechanical, Electronic and Control Engineering, , Beijing 100044 , China ; , Beijing 100105 , China

Abstract

Abstract This paper proposes a reconfigurable wheeled mobile platform (RWMP) consisting of two two-wheeled mobile robots and a reconfigurable trunk. The reconfigurable trunk is a 6R multi-mode single-loop mechanism (SLM) that is obtained by inserting two revolute (R) joints with intersected axes into a planar rhombus 4R mechanism. The 6R mechanism has reconfigurable characteristics owing to changes in the wrench system. All six motion modes and their constraint equations of the 6R mechanism are obtained by solving the closed-loop equation based on the D-H transformation matrix. The analysis shows that the mechanism has six single-DOF motion modes, including a planar rhombus 4R mode, two overconstrained spatial 6R modes, and three coaxial 1R modes. The motion characteristics of the six motion modes are identified using screw theory. The six transition configurations among different modes are identified by combining the constraint equations of each mode. The locomotion modes of the RWMP are designed based on the reconfiguration analysis of the trunk mechanism. The locomotion effect of the RWMP under two confined spaces is verified by simulation analysis and prototype experiment.

Funder

Beijing Jiaotong University

National Natural Science Foundation of China

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3