Separate and Combined Effects of Surface Roughness and Turbulence Intensity on Vane Heat Transfer

Author:

Bunker Ronald S.1

Affiliation:

1. General Electric Company, Schenectady, NY

Abstract

A research and development program has been undertaken to ascertain the effects of surface roughness levels on vane external heat transfer, with varied conditions of inlet freestream turbulence intensity and vane Reynolds number. A transonic linear vane cascade was constructed to operate at a nominal overall pressure ratio of 1.86. Airfoil heat transfer distributions are measured using a thin-walled stainless steel airfoil having imbedded thermocouples. The methodology incorporates a thin-foil surface heater to provide a known heat flux condition, with room temperature mainstream air at approximately 5 atm pressure. Heat transfer is characterized for uniform surface average roughness levels of 0.4, 1.85, and 4.5 micrometers, with inlet turbulence intensity levels from 4 to 13%. Airfoil Reynolds number based on axial chord length and exit velocity ranges from 2.2 to 4.8 · 106. Results show consistent individual and combined effects of Reynolds number, turbulence, and surface roughness changes. Higher roughness levels tend to dominate turbulence effects in most regions except the leading edge.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3