Separate and Combined Effects of Surface Roughness and Thermal Barrier Coating on Vane Cooling Performance

Author:

Prapamonthon Prasert12,Yin Bo3,Yang Guowei3,Zhang Mohan4

Affiliation:

1. Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;

2. Department of Aeronautical Engineering, International Academy of Aviation Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

3. Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

4. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract This work investigates separate and combined effects of the vane surface roughness and thermal barrier coating (TBC) on the cooling performance of a film-cooled high-pressure turbine vane using computational fluid dynamics (CFD) with conjugate heat transfer (CHT) analysis. The cooling effectiveness and heat transfer coefficient, where are predicted within an investigated range of the roughness height from 5 to 20 µm, are compared with those of the smooth vane. Results show that the roughness height increases local heat transfer coefficients in general in the suction side (SS) and the rear-half portion of the pressure side (PS), thereby reducing the cooling effectiveness. The results are different from those in the suction-side vicinity of the leading edge (LE) to further downstream of the pressure side due to uncertain local heat transfer coefficients. In addition, thermal sensitivity to the roughness height and TBC is investigated based on the volume basis in the roughness height range which is extended to 120 µm. Results show that without TBC, a 120 µm increase in the roughness height causes 24 K and 20 K rises of the average and maximum vane temperatures, respectively. With TBC, the average and maximum vane temperatures are reduced as much as 18 K and 27.8 K, respectively.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3