Effects of a Realistically Rough Surface on Vane Heat Transfer Including the Influence of Turbulence Condition and Reynolds Number

Author:

Erickson E. L.1,Ames F. E.2,Bons J. P.3

Affiliation:

1. Third Wave Systems, 7900 West 78th Street, Suite 300, Minneapolis, MN 55439

2. Department of Mechanical Engineering, University of North Dakota, Grand Forks, ND 58202

3. Department of Aerospace Engineering, Ohio State University, 2300 West Case Road, Columbus, OH 43017

Abstract

Heat transfer distributions are experimentally acquired and reported for a vane with both a smooth and a realistically rough surface. Surface heat transfer is investigated over a range of turbulence levels (low (0.7%), grid (8.5%), aerocombustor (13.5%), and aerocombustor with decay (9.5%)) and a range of chord Reynolds numbers (ReC=500,000, 1,000,000, and 2,000,000). The realistically rough surface distribution was generated by Brigham Young University’s accelerated deposition facility. The surface is intended to represent a TBC surface that has accumulated 7500 h of operation with particulate deposition due to a mainstream concentration of 0.02 ppmw. The realistically rough surface was scaled by 11 times for consistency with the vane geometry and cast using a high thermal conductivity epoxy (k=2.1 W/m/K) to comply with the vane geometry. The surface was applied over the foil heater covering the vane pressure surface and about 10% of the suction surface. The 958×573 roughness array generated by Brigham Young on a 9.5×5.7 mm2 region was averaged to a 320×191 array for fabrication. The calculated surface roughness parameters of this scaled and averaged array included the maximum roughness, Rt=1.99 mm, the average roughness, Ra=0.25 mm, and the average forward facing angle, αf=3.974 deg. The peak to valley roughness, Rz, was determined to be 0.784 mm. The sand grain roughness of the surface (kS=0.466 mm) was estimated using a correlation offered by Bons (2005, “A Critical Assessment of Reynolds Analogy for Turbine Flows,” ASME J. Turbomach., 127, pp. 472–485). Based on estimates of skin friction coefficient using a turbulence correlation with the vane chord Reynolds numbers representative values for the surface’s roughness Reynolds number are 23, 43, and 80 for the three exit condition Reynolds numbers tested. Smooth vane heat transfer distributions exhibited significant laminar region augmentation with the elevated turbulence levels. Turbulence also caused early transition on the pressure surface for the higher Reynolds numbers. The rough surface had no significant effect on heat transfer in the laminar regions but caused early transition on the pressure surface in every case.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3