The Low Emission Turbogas Hybrid Vehicle Concept—Preliminary Simulation and Vehicle Packaging

Author:

Capata R.1,Sciubba E.2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical and Aerospace Engineering, University of Roma “Sapienza”, Roma, Italy 00184

Abstract

The paper presents a comprehensive review of the gas turbine hybrid vehicle (GTHV) under development at the University of Roma “Sapienza.” A GHTV is an electric vehicle (traction entirely electric on 1 or 2 axles) equipped with a small turbogas operating as a range extender and –when needed- as a recharger for other auxiliaries. After a brief review of the history of the GTHV technology, a few configurations proposed in the past by different Authors are described and critically analyzed. Then, a complete feasibility assessment of a prototype configuration of a GTHV is presented and discussed in detail. Two possible implementations are studied: one for a small city car (peak power 4–8 kW) and one for a sport GT or passenger sedan (50–100 kW). All issues related to the system and component design, packaging, identification of the “optimal” hybridization ratio, performance of the conversion chain (gas turbine + batteries + electrical motor), kinetic energy recovery systems (KERS), mechanical and electric storage devices (flywheels, capacitors, advanced batteries), monitoring and control logic, compliance with the European vehicular ECE emission regulations, are explicitly addressed. One of the most important results of this analysis is though that there are several “nearly optimal” solutions and the final choice for a possible future industrialization would be dictated by manufacturing, commercial or marketing considerations. It because not only the system performance, but also the absolute and relative sizes (i.e., nameplate power) of the turbines and of the battery package depend substantially on the type of driving mission the car is required to perform. In the paper, both theoretical and practical issues are addressed, and on the basis of the analysis of the existing state of the art, it is argued that the GTHV is an environmentally friendly, technically and economically feasible product based on mature components.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3