Modeling of a Finger-Follower Cam System With Verification in Contact Forces

Author:

Hsu Wensyang1,Pisano A. P.2

Affiliation:

1. Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan R. O. C.

2. Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720

Abstract

A lumped/distributed-parameter dynamic model is developed to investigate the dynamic responses of a finger-follower cam system by considering a hydraulic lash adjuster with an oscillating pivot, and frictional forces between sliding surfaces. The measured force data at low speed are employed to derive an algorithm to determine the dynamic Coulomb friction coefficients at contact points. The contact position between the cam and the follower with moving pivot is determined by a constraint equation method. A hydraulic lash adjuster acting as the pivot of the follower is also modeled with the effects of oil compressibility and oil refill mechanism. Simulated contact forces at three different speeds are shown to have good agreement with experimental data. The separation between the hydraulic lash adjuster and the follower is predicted at a camshaft speed of 2535 rpm, and experiment indicates at 2520 rpm.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3