Analytical, Numerical and Experimental Analysis of a Positive Displacement Cam Mechanism—A Case Study

Author:

Merticaru Eugen1,Merticaru Vasile2ORCID,Nagîț Gheorghe2ORCID,Mihalache Andrei Marius2ORCID,Tăbăcaru Liviu Lucian2,Rîpanu Marius Ionuț2

Affiliation:

1. Department of Mechanical Engineering, Mechatronics and Robotics, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania

2. Department of Machine Manufacturing Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania

Abstract

Cam mechanisms, covering a large structural variety, are widely used in machinery, mainly as components of automated systems. Their functioning behavior is affected by negative dynamic phenomena determined by specific high velocities and acceleration rates. Within the various types of research on the dynamic behavior of cam mechanisms, this study addresses the need to clarify the influence of geometrical parameters and technological conditions on some indicators of the jump phenomenon in contact loss for a cam-follower mechanism. This particularly developed case study referred to a mechanism with a profiled grooved disk cam and oscillating follower. To highlight the influence of the cam-follower contact elasticity on the jump phenomenon, two dynamic models were developed: one considering rigid elements in contact and the second considering elastic cam-follower contact. The models were tested within a virtually simulated experiment, and the numerical simulation results evidenced the influence of input factors like the applied load on the mechanism, the clearance in the cam-follower kinematic pair, and the rotational speed of the cam, and the inertia moment was reduced to the follower on some indicators of the jump phenomenon. Validation FEA and experiments were performed, proving the reliable appropriateness of the dynamic model based on elastic cam-follower contact.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3