A Hybrid Convolutional Neural Network-Long Short Term Memory for Discharge Capacity Estimation of Lithium-Ion Batteries

Author:

Li Yongsheng1,Garg Akhil2,Shevya Shruti3,Li Wei1,Gao Liang2,Lee Lam Jasmine Siu4

Affiliation:

1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China

2. State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 437004, China

3. Department of Mathematics, Indian Institute of Technology (IIT), Kharagpur 721302, India

4. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

Abstract Predicting discharge capacities of lithium-ion batteries (LIBs) is essential for safe battery operation in electric vehicles (EVs). In this paper, a convolutional neural network-long short term memory (CNN-LSTM) approach is proposed to estimate the discharge capacity of LIBs. The parameters such as the voltage, current, temperature, and charge/discharge capacity are recorded from a battery management system (BMS) at various stages of the charge–discharge cycles. The experiments are conducted to obtain the data at different cycles, where each cycle is divided into four steps. Each testing cycle comprises charging, rest, discharging, and rest. In the predictive model, the initial layers are convolutional layers that help in feature extraction. Then, the long and short term memory layer is used to retain or forget related information. Finally, the prediction is completed by selecting the corresponding activation function. The evaluation model is established via the multiple train test split method. The lower values of weighted mean squared error suggest that discharge capacity estimation using CNN-LSTM is a reliable method. The CNN-LSTM approach can further be compiled in BMSs of EVs to get real-time status for state of charge and state of health values.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3