Enhanced Day-Ahead Electricity Price Forecasting Using a Convolutional Neural Network–Long Short-Term Memory Ensemble Learning Approach with Multimodal Data Integration

Author:

Wang Ziyang1ORCID,Mae Masahiro1ORCID,Yamane Takeshi2,Ajisaka Masato2,Nakata Tatsuya2,Matsuhashi Ryuji1

Affiliation:

1. Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan

2. Department of Energy Systems Research and Development, KYOCERA Corporation, Yokohama 220-0012, Japan

Abstract

Day-ahead electricity price forecasting (DAEPF) holds critical significance for stakeholders in energy markets, particularly in areas with large amounts of renewable energy sources (RES) integration. In Japan, the proliferation of RES has led to instances wherein day-ahead electricity prices drop to nearly zero JPY/kWh during peak RES production periods, substantially affecting transactions between electricity retailers and consumers. This paper introduces an innovative DAEPF framework employing a Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM) model designed to predict day-ahead electricity prices in the Kyushu area of Japan. To mitigate the inherent uncertainties associated with neural networks, a novel ensemble learning approach is implemented to bolster the DAEPF model’s robustness and prediction accuracy. The CNN–LSTM model is verified to outperform a standalone LSTM model in both prediction accuracy and computation time. Additionally, applying a natural logarithm transformation to the target day-ahead electricity price as a pre-processing technique has proven necessary for higher prediction accuracy. A novel “policy-versus-policy” strategy is proposed to address the prediction problem of the zero prices, halving the computation time of the traditional two-stage method. The efficacy of incorporating a suite of multimodal features: areal day-ahead electricity price, day-ahead system electricity price, areal actual power generation, areal meteorological forecasts, calendar forecasts, alongside the rolling features of areal day-ahead electricity price, as explanatory variables to significantly enhance DAEPF accuracy has been validated. With the full integration of the proposed features, the CNN–LSTM ensemble model achieves its highest accuracy, reaching performance metrics of R2, MAE, and RMSE of 0.787, 1.936 JPY/kWh, and 2.630 JPY/kWh, respectively, during the test range from 1 March 2023 to 31 March 2023, underscoring the advantages of a comprehensive, multi-dimensional approach to DAEPF.

Funder

KYOCERA Corporation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3