Nonlinear Vibrations of Beams, Strings, Plates, and Membranes Without Initial Tension

Author:

Bao Zhongping1,Mukherjee Subrata1,Roman Max2,Aubry Nadine2

Affiliation:

1. Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853

2. Department of Mechanical Engineering, New Jersey Institute of Technology, Newark, NJ 07102

Abstract

The subject of this paper is nonlinear vibrations of beams, strings (defined as beams with very thin uniform cross sections), plates and membranes (defined as very thin plates) without initial tension. Such problems are of great current interest in minute structures with some dimensions in the range of nanometers (nm) to micrometers (μm). A general discussion of these problems is followed by finite element method (FEM) analyses of beams and square plates with different boundary conditions. It is shown that the common practice of neglecting the bending stiffness of strings and membranes, while permissible in the presence of significant initial tension, is not appropriate in the case of nonlinear vibrations of such objects, with no initial tension, and with moderately large amplitude (of the order of the diameter of a string or the thickness of a plate). Approximate, but accurate analytical expressions are presented in this paper for the ratio of the nonlinear to the linear natural fundamental frequency of beams and plates, as functions of the ratio of amplitude to radius of gyration for beams, or the ratio of amplitude to thickness for square plates, for various boundary conditions. These expressions are independent of system parameters—the Young’s modulus, density, length, and radius of gyration for beams; the Young’s modulus, density, length of side, and thickness for square plates. (The plate formula exhibits explicit dependence on the Poisson’s ratio.) It is expected that these results will prove to be useful for the design of macro as well as micro and nano structures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear vibration analysis of curvy single-walled boron nitride nanotube using mathematical modeling for dynamic responses;International Journal of Modern Physics B;2023-03-25

2. Impact-induced nonlinear damped vibration of fabric membrane structure: Theory, analysis, experiment and parametric study;Composites Part B: Engineering;2019-02

3. Analysis of the natural frequency of a quartz double-end tuning fork with a new deformation model;Journal of Micromechanics and Microengineering;2016-04-27

4. Multi-field coupled dynamics for micro plate;International Journal of Applied Electromagnetics and Mechanics;2011-03-14

5. Electromechanical coupled non-linear vibration of the microplate;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2010-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3