Relationships Between Supply Flow Rate of Small Cooling Fans and Pressure Drop Characteristics in Electronic Enclosure

Author:

Fukue Takashi1,Hatakeyama Tomoyuki2,Ishizuka Masaru2,Hirose Koichi1,Koizumi Katsuhiro3

Affiliation:

1. Iwate University, Morioka, Japan

2. Toyama Prefectural University, Imizu, Japan

3. COSEL Co., Ltd., Toyama, Japan

Abstract

This study describes a prediction method of a supply flow rate of axial cooling fans mounted in high-density packaging electronic equipment. The performance of an air-cooling fan is defined by its P – Q (pressure difference – flow rate) curve. Generally the operating point of a fan, which is the operating pressure and the flow rate in equipment, is the point of intersection of a P – Q curve and a flow resistance curve. Recently, some researchers reported that catalogue P – Q curves have not necessarily been able to predict a correct supply flow rate in thermal design of high-density packaging equipment. Our study aims to improve prediction accuracy of the supply flow rate. In this report, a relationship between the P – Q curve and a pressure drop characteristic in a fan-mounted enclosure was investigated. A test enclosure which includes an obstruction was mounted in front of a test fan and the supply flow rate of the fan was measured while changing the obstruction. Additionally the flow resistance curves in the test enclosure were measured and the relationship among the supply flow rate, the P – Q curve and the flow resistance curve was investigated. It is found that the correct supply flow rate can be obtained by using the flow resistance from the enclosure inlet through the fan outlet and the revised P – Q curve which is made compensation for the pressure drop at the inlet and the outlet of the fan.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Hydraulic Performance Investigation of Fan Enclosure and Competing Effects;2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm);2023-05-30

2. Strategies for thermal management of electronics: Design, development, and applications;Handbook of Thermal Management Systems;2023

3. Novel Development for Thermal Design of Electronic Equipment Using Pulsating Flow from Knowledge of Nature;Journal of The Japan Institute of Electronics Packaging;2018

4. Basic Study on Flow and Heat Transfer Performance of Pulsating Air Flow for Application to Electronics Cooling;Transactions of The Japan Institute of Electronics Packaging;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3