Tribological Evaluation of Few-Layer Nitrogen-Doped Graphene as an Efficient Lubricant Additive on Engine Cylinder Liner: Experiment and Mechanism Investigation

Author:

Lei Wenwu1,Tang Wentao1,Mo Xiaoyu1,Tian Zhiqun2,Shen Peikang2,Ouyang Tiancheng1

Affiliation:

1. Guangxi University School of Mechanical Engineering, , Nanning 530004 , China

2. Guangxi University Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, , Nanning 530004 , China

Abstract

Abstract The restricted adsorption capacity of ordinary graphene at high temperature limits its application in engine lubrication. To address this, nitrogen-doped element-modified graphene with strong adsorption and superior lubricating properties is prepared by a bottom-up chemical strategy in this study. The reciprocating tribometer is aimed at simulating the piston operating environment to determine the lubrication performance of nitrogen-doped graphene. The characterization and analysis of the wear marks are performed by means of depth-of-field microscope, scanning electron microscope, energy dispersive spectrometer, and other instruments. The experimental data demonstrate that the friction-reduction and anti-wear properties of PAO 6 base oil are enhanced by 22.4% and 56.9% (100 °C), respectively, after the addition of 0.4 wt% nitrogen-doped graphene. Besides, the abrasive and adhesive wear are significantly reduced, which are attributed to its inter-layer slip along the sliding direction and superior adsorption performance. Finally, the interfacial lubrication mechanism of lubricant protective film under high-temperature conditions is revealed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3