Synergistic Effect Between Phosphonium-Based Ionic Liquid and Three Oxide Nanoparticles as Hybrid Lubricant Additives

Author:

Upendra M.1,Vasu V.1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Warangal 506004, India

Abstract

Abstract The tribological properties of ionic liquid (IL) trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate along with Al2O3, CuO, and SiO2 nanoparticles (NPs) have been investigated as a lubricant additive in a group 1 mineral base oil. About 0.5 wt% concentration of additives were added in base oil, and tribological tests were conducted at mild (stipulated) and severe (ASTM D 4172D) working conditions to assess the synergy between IL and NPs. This study shows the excellent synergy between IL, Al2O3, and CuO NPs in improving tribological and extreme pressure (EP) properties. Al2O3 and CuO hybrid nanolubricants decreased friction by 19% and 24%, whereas wear by 32% and 36%, respectively, at ASTM test conditions. IL displayed very good EP properties with a total improvement of 19%, and the highest load-bearing capacity was observed for Al2O3 and CuO hybrid nanolubricants with an improvement of 30% and 34%, respectively. No conclusive evidence of synergy has been observed between IL and SiO2 NPs. Surface characterization techniques, such as scanning electron microscope, energy dispersive X-ray spectrometer, and Raman spectra, demonstrated the formation of a tribofilm rich in phosphate and tribosintered NPs on the worn surface responsible for improved triboperformances.

Funder

Science and Engineering Research Board (SERB) government of India

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3