Effects of Bladder Geometry in Pneumatic Artificial Muscles

Author:

Ball Erick1,Garcia Ephrahim2

Affiliation:

1. Laboratory for Intelligent Machine Systems, Cornell University, Ithaca, NY 14853 e-mail:

2. Laboratory for Intelligent Machine Systems, Cornell University, Ithaca, NY 14853

Abstract

Designing optimal pneumatic muscles for a particular application requires an accurate model of the hyperelastic bladder and how it influences contraction force. Previous work does not fully explain the influence of bladder prestrain on actuator characteristics. We present here modeling and experimental data on the actuation properties of artificial muscles constructed with varying bladder prestrain and wall thickness. The tests determine quasi-static force–length relationships during extension and contraction, for muscles constructed with unstretched bladder lengths equal to 55%, 66%, and 97% of the stretched muscle length and two different wall thicknesses. Actuator force and maximum contraction length are found to depend strongly on both the prestrain and the thickness of the rubber, making existing models inadequate for choosing bladder geometry. A model is presented to better predict force–length characteristics from geometric parameters, using a novel thick-walled tube calculation to account for the nonlinear elastic properties of the bladder. It includes axial force generated by stretching the bladder lengthwise, and it also describes the hoop stress created by radial expansion of the muscle that partially counteracts the internal fluid pressure exerted outward on the mesh. This effective reduction in pressure affects both axial muscle force and mesh-on-bladder friction. The rubber bladder is modeled as a Mooney–Rivlin incompressible solid. The axial force generated by the mesh is found directly from contact forces rather than from potential energy. Modeling the bladder as a thin-walled tube gives a close match to experimental data on wall thickness, but a thick-walled bladder model is found to be necessary for explaining the effects of prestrain.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference33 articles.

1. More Help for Polio Victims

2. Modelling of the McKibben Artificial Muscle: A Review;J. Intell. Mater. Syst. Struct.,2012

3. Compliant Robotics and Automation With Flexible Fluidic Actuators and Inflatable Structures,2012

4. Modeling and Control of McKibben Artificial Muscle Robot Actuators;IEEE Control Syst.,2000

5. Artificial Muscles: Actuators for Biorobotic Systems;Int. J. Rob. Res.,2002

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3