Hybridized neural network inspired behavioural modelling of pneumatic artificial muscles for assistive robotic applications

Author:

Arora Aman,Sarkar Debadrata,Majumder Arunabha,Sen Soumen,Roy Shibendu Shekhar

Abstract

Purpose This paper aims to devise a first-of-its-kind methodology to determine the design, operating conditions and actuation strategy of pneumatic artificial muscles (PAMs) for assistive robotic applications. This requires extensive characterization, data set generation and meaningful modelling between PAM characteristics and design variables. Such a characterization should cover a wide range of design and operation parameters. This is a stepping stone towards generating a design guide for this highly popular compliant actuator, just like any conventional element of a mechanism. Design/methodology/approach Characterization of a large pool of custom fabricated PAMs of varying designs is performed to determine their static and dynamic behaviours. Metaheuristic optimizer-based artificial neural network (ANN) structures are used to determine eight different models representing PAM behaviour. The assistance of knee flexion during level walking is targeted for evaluating the applicability of the developed actuator by attaching a PAM across the joint. Accordingly, the PAM design and the actuation strategy are optimized through a tabletop emulator. Findings The dependence of passive length, static contraction, dynamic step response for inflation and deflation of the PAMs on their design dimensions and operating parameters is successfully modelled by the ANNs. The efficacy of these models is investigated to successfully optimize the PAM design, operation parameters and actuation strategy for using a PAM in assisting knee flexion in human gait. Originality/value Characterization of static and the dynamic behaviour of a large pool of PAMs with varying designs over a wide range of operating conditions is the novel feature in this article. A lucid customizable fabrication technique is discussed to obtain a wide variety of PAM designs. Metaheuristic-based ANNs are used for tackling high non-linearity in data while modelling the PAM behaviour. An innovative tabletop emulator is used for investigating the utility of the models in the possible application of PAMs in assistive robotics.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference17 articles.

1. A survey on applications of pneumatic artificial muscles,2011

2. A survey on static modeling of miniaturized pneumatic artificial muscles with new model and experimental results;Applied Mechanics Review,2018

3. Effects of bladder geometry in pneumatic artificial muscles;Journal of Medical Devices,2016

4. Advances of metaheuristic algorithms in training neural networks for industrial applications;Soft Computing,2021

5. Measurement and modeling of McKibben pneumatic artificial muscles;IEEE Transactions on Robotics and Automation,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Neural Network assisted hybrid control scheme for a custom fabricated Pneumatic Artificial Muscle driven robotic joint;Advances In Robotics - 6th International Conference of The Robotics Society;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3