Transient Thermo-mechanical Stress Analysis of Hot Surface Probe Using Sequentially Coupled Cfd-fea Approach

Author:

Kang Sang-Guk1,Ryu Je Ir1,Motily Austen2,Numkiatsakul Prapassorn2,Lee Tonghun2,Kriven Waltraud2,Kim Kenneth1,Kweon Chol-Bum M.1

Affiliation:

1. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

2. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract

Abstract Energy addition using a hot surface probe is required for reliable ignition of aircraft compression ignition engines running on fuel variations and at altitude conditions. Thus, durability of the hot surface probe is crucial for application in these engines. Thermo-mechanical stress is one of the key parameters that determine durability, which requires an accurate prediction of the transient temperature field based on well-defined boundary conditions representing the dynamic and complex fluid flow inside engines. To meet this requirement, the present study focuses on transient thermo-mechanical stress analysis using a sequentially coupled CFD-FEA approach to understand transient thermo-mechanical responses of the hot surface probe. A 3D transient reacting flow simulation was conducted first using CONVERGE software, the results of which were exported to map thermal and pressure boundary conditions onto a structural finite element mesh. Transient thermo-mechanical stress analysis was performed sequentially using ABAQUS software utilizing the mapped boundary conditions. The results such as transient temperature history, resultant thermo- mechanical stress, displacement, potential failure modes, etc. were critically reviewed, which can provide helpful information for further design improvement.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3