Design Considerations for Ceramic Matrix Composite High Pressure Turbine Blades

Author:

Boyle Robert J.1,Parikh Ankur H.1,Nagpal Vinod K.1

Affiliation:

1. N&R Engineering, Parma Heights, OH

Abstract

Abstract Issues associated with using SiC/SiC Ceramic Matrix Composite (CMC) materials for High Pressure Turbine (HPT) rotor blades are explored. SiC/SiC materials have higher temperature capability than current HPT superalloys. The strength versus temperature characteristics of SiC/SiC CMCs differs from that of superalloys. Stress analyses were done for a NASA specified notional single aisle aircraft engine blade to be available in the N+3 time frame, (beyond 2030). Stacking, the relative position of hub and tip sections, depends on both pressure and centrifugal forces, and material density. The effect of blade stacking on blade stresses is examined. The change in stresses as the rotation rate varies is examined. The change in engine weight, and thus fuel consumption, due to changes in engine size as the rpm changes is discussed. SiC/SiC CMC materials are generally not isotropic. The effect on stresses and strains of a directional variation in Young’s modulus is examined. Shrouding metallic HPT rotor blades is not common. Shrouding SiC/SiC CMC rotor blades may be feasible due to the lower density, and thus lower centrifugal loads, of SiC/SiC blades. The increase in stresses due to shrouding a SiC/SiC blade is discussed.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3