Influence of Anisotropic Thermal Conductivity on Overall Cooling Effectiveness on a Film-Cooled Leading Edge

Author:

Bryant Carol E.1,Rutledge James L.2

Affiliation:

1. Air Force Institute of Technology, Wright-Patterson AFB, OH 45433

2. Air Force Institute of Technology, Wright Patterson AFB, OH 45433

Abstract

Abstract Increasing interest in the use of ceramic matrix composites (CMCs) for gas turbine engine hot gas path components requires a thorough examination of the thermal behavior one may expect of such components. Their highly anisotropic thermal conductivity is a substantial departure from traditional metallic components and can influence the temperature distribution in surprising ways. With the ultimate surface temperature dependent on the internal cooling scheme, including cooling from within the film cooling holes themselves, as well as the external film cooling, the relative influence of these contributions to cooling can be affected by the directionality of the thermal conductivity. Conjugate heat transfer computational simulations were performed to evaluate the effect of anisotropy in the leading edge region of a turbine component. The leading edge region is modeled as a fully film-cooled half cylinder with a flat afterbody. Changing the anisotropic directionality of the thermal conductivity is shown to have nearly the same effect on temperature distribution over the surface of the leading edge as increasing the thermal conductivity by a factor of four. While structural considerations with CMC components are often paramount, designers should be aware of the thermal ramifications associated with the selection of the CMC lay-up.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3