Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation

Author:

Lee Eric1,Mavroidis Constantinos1

Affiliation:

1. Robotics and Mechatronics Laboratory, Department of Mechanical and Aerospace Engineering, Rutgers University, The State University of New Jersey, 98 Brett Rd., Piscataway, NJ 08854

Abstract

In this paper, the geometric design problem of serial-link robot manipulators with three revolute (R) joints is solved using a polynomial homotopy continuation method. Three spatial positions and orientations are defined and the dimensions of the geometric parameters of the 3-R manipulator are computed so that the manipulator will be able to place its end-effector at these three pre-specified locations. Denavit and Hartenberg parameters and 4×4 homogeneous matrices are used to formulate the problem and obtain eighteen design equations in twenty-four design unknowns. Six of the design parameters are set as free choices and their values are selected arbitrarily. Two different cases for selecting the free choices are considered and their design equations are solved using polynomial homotopy continuation. In both cases for free choice selection, eight distinct manipulators are found that will be able to place their end-effector at the three specified spatial positions and orientations.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference30 articles.

1. Suh, C. H., and Radcliffe, C. W., 1978, Kinematics and Mechanism Design, Wiley and Sons, New York.

2. Tsai, L. W., 1972, “Design of Open Loop Chains for Rigid Body Guidance,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University.

3. Roth, B., 1986, “Analytic Design of Open Chains,” Proceedings of the Third International Symposium of Robotic Research, O. Faugeras and G. Giralt, eds., MIT Press, Cambridge, MA.

4. Bodduluri, M., Ge, J., McCarthy, M. J., and Roth, B., 1993, “The Synthesis of Spatial Linkages,” Modern Kinematics: Developments in the Last Forty Years, A. Erdman, ed., John Wiley and Sons.

5. Raghavan, M., and Roth, B., 1995, “Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators,” ASME J. Mech. Des., 117, pp. 71–78.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3