Unlocking a nose landing gear in different flight conditions: folds, cusps and a swallowtail

Author:

Knowles James A. C.ORCID,Krauskopf Bernd,Coetzee Etienne B.

Abstract

AbstractThis paper investigates the unlocking of a non-conventional nose landing gear mechanism that uses a single lock to fix the landing gear in both its downlocked and uplocked states (as opposed to having two separate locks as in most present nose landing gears in operation today). More specifically, we present a bifurcation analysis of a parameterized mathematical model for this mechanical system that features elastic constraints and takes into account internal and external forces. This formulation makes it possible to employ numerical continuation techniques to determine the robustness of the proposed unlocking strategy with respect to changing aircraft attitude. In this way, we identify as a function of several parameters the steady-state solutions of the system, as well as their bifurcations: fold bifurcations where two steady states coalesce, cusp points on curves of fold bifurcations, and a swallowtail bifurcation that generates two cusp points. Our results are presented as surfaces of steady states, joined by curves of fold bifurcations, over the plane of retraction actuator force and unlock actuator force, where we consider four scenarios of the aircraft: level flight; steep climb; steep descent; intermediate descent. A crucial cusp point is found to exist irrespective of aircraft attitude: it corresponds to the mechanism being at overcentre, which is a position that creates a mechanical singularity with respect to the effect of forces applied by the actuators. Furthermore, two cusps on a key fold locus are unfolded in a (codimension-three) swallowtail bifurcation as the aircraft attitude is changed: physical factors that create these bifurcations are presented. A practical outcome of this research is the realization that the design of this and other types of landing gear mechanism should be undertaken by considering the effects of forces over considerable ranges, with a special focus on the overcentre position, to ensure a smooth retraction occurs. More generally, continuation methods are shown to be a valuable tool for determining the overall geometric structure of steady states of mechanisms subject to (external) forces.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3