Image-Based Feedback Control for a Coaxial Spray

Author:

Bothell Julie K.1,Morgan Timothy B.1,Heindel Theodore J.1

Affiliation:

1. Department of Mechanical Engineering, Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011

Abstract

Abstract Optimization of jet engine sprays has the potential to improve efficiency and reduce environmental impact. Sprays can be continually optimized in multivariate scenarios using real-time feedback control, but a method of controlling the sprays based on physical properties must first be established. In this study, a spray controller was developed to optimize the spray angle obtained from shadowgraphs, with the assumption that the largest angle is desired. The spray angle was used as an example, as it is a physically important parameter which is easily found through shadowgraph imaging. Varying ratios of swirled air to straight air, determined by the image-based feedback controller were introduced into the air portion of a coaxial airblast nozzle while keeping the total air flow rate constant. A golden section search converged on the swirled air ratio that provided the largest angle and was validated from the distribution of spray angle versus swirled air ratio. The ratio that produced a spray with the greatest angle of 25.8 ± 2 deg was found at a swirled air ratio of 0.66 ± 0.03 for a spray with a momentum ratio of 6. The successful design and implementation of this image-based feedback controller is intended to provide a foundation for developing real-time active feedback controllers for sprays.

Publisher

ASME International

Subject

Mechanical Engineering

Reference14 articles.

1. Liquid Jet Instability and Atomization in a Coaxial Gas Stream;Annu. Rev. Fluid Mech.,2000

2. Identification of Pulsation Mechanism in a Transonic Three-Stream Airblast Injector;ASME J. Fluids Eng.,2016

3. Determination of the Drop Size During Air-Blast Atomization;ASME J. Fluids Eng.,2019

4. The Shadowgraph Imaging Technique and Its Modern Application to Fluid Jets and Drops;Rev. Mexicana Fisica,2011

5. Regimes of Spray Formation in Gas-Centered Swirl Coaxial Atomizers;Exp. Fluids,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3