Identification of Pulsation Mechanism in a Transonic Three-Stream Airblast Injector

Author:

Strasser Wayne1,Battaglia Francine2

Affiliation:

1. Fellow ASME Eastman Chemical Company, Kingsport, TN 37660 e-mail:

2. Fellow ASME Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 e-mail:

Abstract

Acoustics and ligament formation within a self-generating and self-sustaining pulsating three-stream injector are analyzed and discussed due to the importance of breakup and atomization of jets for agricultural, chemical, and energy-production industries. An extensive parametric study was carried out to evaluate the effects of simulation numerics and boundary conditions using various comparative metrics. Numerical considerations and boundary conditions made quite significant differences in some parameters, which stress the importance of using documented and consistent numerical discretization recipes when comparing various flow conditions and geometries. Validation exercises confirmed that correct droplet sizes could be produced computationally, the Sauter mean diameter (SMD) of droplets/ligaments could be quantified, and the trajectory of a droplet intersecting a shock wave could be accurately tracked. Swirl had a minor impact by slightly moving the ligaments away from the nozzle outlet and changing the spray to a hollow cone shape. Often, metrics were synchronized for a given simulation, indicating that a common driving mechanism was responsible for all the global instabilities, namely, liquid bridging and fountain production with shockletlike structures. Interestingly, both computational fluid dynamics (CFD) and the experimental non-Newtonian primary droplet size results, when normalized by distance from the injector, showed an inversely proportional relationship with injector distance. Another important outcome was the ability to apply the models developed to other nozzle geometries, liquid properties, and flow conditions or to other industrial applications.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3