Determination of the Drop Size During Air-Blast Atomization

Author:

Lee T.-W.1,Park J. E.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, SEMTE Arizona State University, Tempe, AZ 85287-6106

Abstract

We have used the integral form of the conservation equations, to find a cubic formula for the drop size during in liquid sprays in coflow of air (air-blast atomization). Similar to our previous work, the energy balance dictates that the initial kinetic energy of the gas and injected liquid will be distributed into the final surface tension energy, kinetic energy of the gas and droplets, and viscous dissipation. Using this approach, the drop size can be determined based on the basic injection and fluid parameters for “air-blast” atomization, where the injected liquid is atomized by high-speed coflow of air. The viscous dissipation term is estimated using appropriate velocity and length scales of liquid–air coflow breakup. The mass and energy balances for the spray flows render to an expression that relates the drop size to all of the relevant parameters, including the gas- and liquid-phase velocities and fluid properties. The results agree well with experimental data and correlations for the drop size. The solution also provides for drop size–velocity cross-correlation, leading to computed drop size distributions based on the gas-phase velocity distribution. This approach can be used in the estimation of the drop size for practical sprays and also as a primary atomization module in computational simulations of air-blast atomization over a wide range of injection and fluid conditions, the only caveat being that a parameter to account for the viscous dissipation needs to be calibrated with a minimal set of observational data.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3