DETERMINATION OF THE DROP SIZE AND DISTRIBUTIONS IN SWIRL INJECTION IN CROSS FLOWS, IMPINGING, AND EFFERVESCENT INJECTORS

Author:

Park J. E.,Lee T.-W.,Maly M.,Cejpek O.,Jedelsky Jan

Abstract

We have extended the primary atomization analysis to swirl injection in cross flows, impinging, and effervescent injectors. Using the integral form of the conservation equations, the drop size can be expressed in terms of injection and fluid parameters, the main variable being the liquid and gas velocities. Using the measured velocities as inputs to this <i>D</i><sub>32</sub>-equation, good agreements with experimental data are found for the drop size in the three spray geometries. Underlying physical mechanisms for the drop formation are also revealed from the analysis. The aerodynamic interaction between the swirl spray and cross flow results in reduction in momentum, with a corresponding decrease in kinetic energy that appears as surface tension of energy of many small droplets. Similarly, cancellation of the lateral momentum in impinging jets and internal deceleration in effervescent injectors are the key primary atomization routes. The use of the analytical drop size-velocity correlation has also been demonstrated for swirl sprays in cross flows. Therefore, this approach can be used to predict the drop size and distributions in different spray geometries, with appropriate changes in the velocity input terms and fluid properties.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3