Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty

Author:

Whiting Nolan W.1,Roy Christopher J.1,Duque Earl2,Lawrence Seth3,Oberkampf William L.4

Affiliation:

1. Department of Aerospace and Ocean Engineering, Virginia Tech Crofton , Blacksburg, VA 24060

2. Intelligent Light , Rutherford, NJ 07070

3. Applied Research Group Intelligent Light , Rutherford, NJ 07070

4. W. L. Oberkampf Consulting , Georgetown, TX 78633

Abstract

Abstract Model validation is the process of determining the degree to which a model is an accurate representation of the true value in the real world. The results of a model validation study can be used to either quantify the model form uncertainty or to improve/calibrate the model. The model validation process becomes complex when there is uncertainty in the simulation and/or experimental outcomes. These uncertainties can be in the form of aleatory uncertainties due to randomness or epistemic uncertainties due to lack of knowledge. Five different approaches are used for addressing model validation and predictive capability: (1) the area validation metric (AVM), (2) a modified area validation metric (MAVM) with confidence intervals, (3) the validation uncertainty procedure from ASME V&V 20, (4) a calibration procedure interpreted from ASME V&V 20, and (5) identification of the model discrepancy term using Bayesian estimation. To provide an unambiguous assessment of these different approaches, synthetic experimental data is generated from computational fluid dynamics simulations of an airfoil with a flap. A simplified model is then developed using thin airfoil theory. The accuracy of the simplified model is assessed using the synthetic experimental data. The quantities examined include the two-dimensional lift and moment coefficients for the airfoil with varying angles of attack and flap deflection angles. Each of these approaches is assessed for the ability to tightly encapsulate the true value at conditions both where experimental results are provided and prediction locations where no experimental data are available. Generally, it was seen that the MAVM performed the best in cases where there is a sparse amount of data and/or large extrapolations. Furthermore, it was found that Bayesian estimation outperformed the others where there is an extensive amount of experimental data that covers the application domain.

Funder

Office of Science

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference19 articles.

1. Assessment Criteria for Computational Fluid Dynamics Model Validation Experiments;ASME J. Verif., Valid., Uncert. Quantif.,2017

2. Test Uncertainty;ASME,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3