Assessment Criteria for Computational Fluid Dynamics Model Validation Experiments

Author:

Oberkampf William L.1,Smith Barton L.2

Affiliation:

1. Mem. ASME W. L. Oberkampf Consulting, 5112 Hidden Springs Trail, Georgetown, TX 78633 e-mail:

2. Mem. ASME Professor Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT 84322 e-mail:

Abstract

Validation assesses the accuracy of a mathematical model by comparing simulation results to experimentally measured quantities of interest. Model validation experiments emphasize obtaining detailed information on all input data needed by the mathematical model, in addition to measuring the system response quantities (SRQs) so that the predictive accuracy of the model can be critically determined. This article proposes a framework for assessing model validation experiments for computational fluid dynamics (CFD) regarding information content, data completeness, and uncertainty quantification (UQ). This framework combines two previously published concepts: the strong-sense model validation experiments and the modeling maturity assessment procedure referred to as the predictive capability maturity method (PCMM). The model validation experiment assessment requirements are captured in a table of six attributes: experimental facility, analog instrumentation and signal processing, boundary and initial conditions, fluid and material properties, test conditions, and measurement of system responses, with four levels of information completeness for each attribute. The specifics of this table are constructed for a generic wind tunnel experiment. Each attribute’s completeness is measured from the perspective of the level of detail needed for input data using direct numerical simulation of the Navier–Stokes equations. While this is an extraordinary and unprecedented requirement for level of detail in a model validation experiment, it is appropriate for critical assessment of modern CFD simulations.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modelling and Simulation,Statistics and Probability

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3