Validation of a Human Upper Airway Computational Fluid Dynamics Model for Turbulent Mixing

Author:

Kacinski Robert1,Strasser Wayne1,Leonard Scott2,Prichard Reid1,Truxel Ben1

Affiliation:

1. Department of Mechanical Engineering, Liberty University , Lynchburg, VA 24515

2. Department of Science and Innovation, Vapotherm , Exeter, NH 03833

Abstract

Abstract Validation of a computational fluid dynamics (CFD) model used to simulate turbulent exchange in an anatomically detailed human upper airway with realistic breathing states is provided. Proper model validation is vital in confirming that temporal mixing and species distribution are accurate, therefore making the model useful in generalized turbulent mixing studies of the upper airway. Numerous levels of refinement were tested for time-step and mesh independence. Higher and lower rigor groups of modeling methodologies involved spatial discretization schemes, gradient reconstruction methods, transient formulations, and turbulence frameworks. A dual mesh independence study revealed that the rate of approach to mesh independence is a function of computational rigor and that multiple mesh independence studies should be carried out in parallel. The final validated model consisted of the finest mesh used in this study (8 × 106 cells), a time-step equating to 4000 timesteps per breath cycle, and higher rigor modeling methodologies. While its results were within the acceptable deviation from the experimental data, it was not as close as the model that utilized the coarsest mesh (∼2 × 106 cells), the fewest timesteps per breath cycle (128 timesteps per breath cycle), and lower rigor methodologies. Though the latter model was closer to the experimental data, it was proven to not be numerically independent, highlighting the importance of utilizing a myriad of metrics to prove numerical independence. Restricting independence studies to only using metrics from experimental comparisons is insufficient for proper validation.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3