Investigation of the Enhancement of Heat Transfer in a Flat Plate Solar Collector With a Corrugated Tube Under Thermosiphon Effect

Author:

Lopes Ewerton Ferreira1,Salviano Leandro Oliveira1

Affiliation:

1. São Paulo State University , Ilha Solteira, SP 15385000 , Brazil

Abstract

Abstract The development of new technologies for energy generation and use has been increasing significantly. In this projection, the use of flat solar collectors to convert solar energy into thermal energy through water heating for residential and commercial purposes has grown due to the potential reduction of up to 40% in electrical energy consumption promoted by these devices. A promising but underexplored area in engineering is the study of the intensification of heat transfer in these devices by changing the dimensional and constructive characteristics of the elevation tubes, especially through a numerical approach by passive systems that operate under the thermosiphon effect. Thus, this work aims to investigate, by using computational fluid dynamics (CFD), the heat transfer process in a flat plate solar collector with a concentric plate to the elevation tube, evaluating different diameters, angles of inclination, and slope corrugation profiles subjected to a constant heat flux. The numerical modeling considers a single-phase, incompressible, permanent, three-dimensional, and laminar flow, in addition to the Boussinesq approximation. The results showed that significant increases in the heat transfer rate can be achieved with absorber plates in comparison to those configurations without absorber plates. Moreover, the increase in the tube diameter allowed gains of up to 5.1% in the heat transfer rate, while the increase in the angle of inclination did not promote significant improvements. The triangular profile R10 P20 configuration increased the Nusselt number by 8%, while the R5 P20 configuration promoted a 25% gain in thermo-hydraulic performance.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3