Multi-Objective Robust Optimization Using a Postoptimality Sensitivity Analysis Technique: Application to a Wind Turbine Design

Author:

Wang Weijun1,Caro Stéphane2,Bennis Fouad1,Soto Ricardo34,Crawford Broderick56

Affiliation:

1. Ecole Centrale de Nantes, Institut de Recherche en Communications et Cybernétique de Nantes, 1 rue de la Noë, Nantes 44321, France e-mail:

2. CNRS, Institut de Recherche en Communications et Cybernétique de Nantes, UMR CNRS 6597, France e-mail:

3. Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso 2362807, Chile

4. Universidad Autónoma de Chile, Av. Pedro de Valdivia 641, Santiago 7500138, Chile e-mail:

5. Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago 7501015, Chile

6. Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Bellavista 7, Recoleta, Santiago 8420524, Chile e-mail:

Abstract

Toward a multi-objective optimization robust problem, the variations in design variables (DVs) and design environment parameters (DEPs) include the small variations and the large variations. The former have small effect on the performance functions and/or the constraints, and the latter refer to the ones that have large effect on the performance functions and/or the constraints. The robustness of performance functions is discussed in this paper. A postoptimality sensitivity analysis technique for multi-objective robust optimization problems (MOROPs) is discussed, and two robustness indices (RIs) are introduced. The first one considers the robustness of the performance functions to small variations in the DVs and the DEPs. The second RI characterizes the robustness of the performance functions to large variations in the DEPs. It is based on the ability of a solution to maintain a good Pareto ranking for different DEPs due to large variations. The robustness of the solutions is treated as vectors in the robustness function space (RF-Space), which is defined by the two proposed RIs. As a result, the designer can compare the robustness of all Pareto optimal solutions and make a decision. Finally, two illustrative examples are given to highlight the contributions of this paper. The first example is about a numerical problem, whereas the second problem deals with the multi-objective robust optimization design of a floating wind turbine.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference81 articles.

1. Tolerance Synthesis of Mechanisms: A Robust Design Approach;ASME J. Mech. Des.,2005

2. Robust Optimization-A Comprehensive Survey;Comput. Methods Appl. Mech. Eng.,2007

3. Searching for Robust Pareto-Optimal Solutions in Multi-Objective Optimization,2005

4. Introducing Robustness in Multi-Objective Optimization;Evol. Comput.,2006

5. Practical Robust Design Optimization Using Evolutionary Algorithms;ASME J. Mech. Des.,2011

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Analysis of Offshore Wind Turbines: Problem Formulation and Optimization Techniques;Journal of Marine Science and Application;2024-07-05

2. The Multi‐Objective Robust Optimization Design of Ultra‐High Efficiency Induction Machine;IEEJ Transactions on Electrical and Electronic Engineering;2021-10-22

3. Modeling and Design Exploration of a Tensegrity-Based Twisting Wing;Journal of Mechanisms and Robotics;2021-03-26

4. Nonproportional Intentionally Mistuned Turbine Blisk Design with Improved Component Modal Synthesis;Shock and Vibration;2021-01-29

5. Multi-objective Optimization Design of An Inchworm Climbing Robot;2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM);2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3