Modeling and Design Exploration of a Tensegrity-Based Twisting Wing

Author:

Pham Nguyen K.1,Peraza Hernandez Edwin A.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697-3975

Abstract

Abstract This paper presents a modeling and design exploration study of a novel twisting wing whose motion is enabled by a tensegrity mechanism. The aerodynamic characteristics of the twisting wing, which does not require control surfaces to modulate its shape, are compared with those of a conventional wing having a control surface. It is shown via computational fluid dynamics analyses that the twisting wing displays higher lift-to-drag ratio than the conventional wing and hence the twisting wing is more aerodynamically efficient. Subsequently, the torsional tensegrity mechanism, composed of multiple tensegrity cylindrical cells forming a column along the wingspan, is described. A finite element model of the wing incorporating this mechanism is developed. Using the model, a design of experimental study of the influence of the topological parameters of the torsional tensegrity mechanism on the twist angle, mass, and stress in different components of the wing is performed. A wingspan of 142.24 cm and a chord length of 25.31 cm are assumed, corresponding to those of the Carl Goldberg Falcon 56 Mk II R/C unmanned aerial vehicle. For a wing of such dimensions, the maximum achievable twist angle from root to tip per unit mass without any component exceeding their allowable stress is 5.93 deg/kg, which is sufficiently large to allow for effective modulation of the aerodynamic characteristics of the wing. The torsional tensegrity mechanism for this design consists of eight cylindrical cells and four sets of actuator wires along the circumference of each cell.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3