Surface Chemistry and Characteristics Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials
Affiliation:
1. Sr. Packaging Engineer, Assembly Technology Development, CH5-157, Intel Corporation, 5000 W. Chandler Blvd. Chandler, AZ 85226-3699
Abstract
Microprocessor powers are increasing at a phenomenal rate, which requires very small thermal resistance between the die (chip) and the ambient, if the current economical methods of conduction and convection cooling are to be utilized. A typical thermal solution in flip chip technology utilizes two levels of thermal interface materials: between the die and the heat spreader, and between the heat spreader and the heat sink. Phase change materials and thermal greases are among the most prominent interstitial thermal interface materials (TIM) used in electronic packaging. These TIMs are typically polymeric matrix loaded with highly conducting filler particles. The dwindling thermal budget has necessitated a better understanding of the thermal resistance of each component of the thermal solution. Thermal conductivity of these particle-laden materials is better understood than their contact resistance. A careful review of the literature reveals the lack of analytical models for the prediction of contact resistance of these types of interstitial materials, which possess fluidic properties. This paper introduces an analytical model for the thermal contact resistance of these types of interstitial materials. This model is compared with the experimental data obtained on the contact resistance of these TIMs. The model, which depends on parameters such as, surface tension, contact angle, thermal conductivity, roughness and pressure matches very well with the experimental data at low pressures and is still within the error bars at higher pressures.
Publisher
ASME International
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference13 articles.
1. Snaith, B., O’ Callaghan, P. W., and Probert, S. D., 1984, “Use of Interstitial Materials for Thermal Contact Conductance Control,” Proc. AIAA 22ndAerospace Sciences Meeting, Jan. 9–12, 1984, Reno, Nevada, pp. 1–8. 2. Madhusudana, C. V., 1996, Thermal Contact Conductance, Springer-Verlag, New York. 3. Snaith, B., O’Callaghan, Snaith, B., and Probert, S. D., 1982, “Minimizing the Thermal Resistance of Pressed Metallic Contacts,” J. Mech. Eng. Sci., 24, No. 4, pp. 183–189. 4. Zhao, L., and Phelan, P. E., 1999, “Thermal Contact Conductance Across Filed Polyimide Films at Cryogenic Temperatures,” Cryogenics, 39, pp. 803–809. 5. Devpura, A., Phelan, P. E., and Prasher, R. S., 2000, “Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology,” Proc. of ITHERM, May 23–26, Las Vegas, Nevada, Vol. 1, pp. 21–28.
Cited by
111 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|