Development of a Thermal Metrology Standard for Evaluation of Cold Plate Thermal Resistance as a Performance Metric

Author:

Martinez Victor A.1ORCID,Caceres Carol2,Ortega Alfonso3

Affiliation:

1. LATFS Department of Mechanical Engineering, Villanova University , Villanova, PA 19085-1603

2. LATFS Department of Mechanical Engineering, Villanova University , Poughkeepsie, NY 12603

3. LATFS Department of Mechanical Engineering, Villanova University , Villanova, PA 19085

Abstract

Abstract A significant number of investigations have been performed to develop and optimize cold plates for direct-to-chip cooling of processor packages. Many investigations have reported computational simulations using commercially available computational fluid dynamic tools that are compared to experimental data. Generally, the simulations and experimental data are in qualitative agreement but often not in quantitative agreement. Frequently, the experimental characterizations have high experimental uncertainty. In this study, extensive experimental evaluations are used to demonstrate the errors in experimental thermal measurements and the experimental artifacts during testing that lead to unacceptable inconsistency and uncertainty in the reported thermal resistance. By comparing experimental thermal data, such as the temperature at multiple positions on the processor lid, and using that data to extract a meaningful measure of thermal resistance, it is shown that the data uncertainty and inconsistency are primarily due to three factors: (1) inconsistency in the thermal boundary condition supplied by the thermal test vehicle (TTV) to the cold plate, (2) errors in the measurement and interpretation of the surface temperature of a solid surface, such as the heated lid surface, and (3) errors introduced by improper contact between cold plate and TTV. A standard thermal test vehicle (STTV) was engineered and used to provide reproducible thermal boundary conditions to the cold plate. An uncertainty analysis was performed in order to discriminate between the sources of inconsistencies in the reporting of thermal resistance, including parameters such as mechanical load distribution, methods for measuring the cold plate base, and TTV surface temperatures. A critical analysis of the classical thermal resistance definition was performed to emphasize its shortcomings for evaluating the performance of a cold plate. It is shown that the thermal resistance of cold plates based on heat exchanger theory better captures the physics of the heat transfer process when cold plates operate at high thermodynamic effectiveness.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3