Development of a Numerical Model for Single- and Two-Phase Flow Simulation in Perforated Porous Media

Author:

Movahedi Hamed1,Vasheghani Farahani Mehrdad2,Masihi Mohsen1

Affiliation:

1. Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-11155, Iran

2. Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Abstract In this paper, we present a computational fluid dynamics (CFD) model to perform single- and two-phase fluid flow simulation on two- and three-dimensional perforated porous media with different perforation geometries. The finite volume method (FVM) has been employed to solve the equations governing the fluid flow through the porous media and obtain the pressure and velocity profiles. The volume of fluid (VOF) method has also been utilized for accurate determination of the volume occupied by each phase. The validity of the model has been achieved via comparing the simulation results with the available experimental data in the literature. The model was used to analyze the effect of perforation geometrical parameters (length and diameter), degree of heterogeneity, and also crushed zone properties (permeability and thickness) on the pressure and velocity profiles. The two-phase fluid flow around the perforation tunnel under the transient flow regime was also investigated by considering a constant mass flow boundary condition at the inlet. The developed model successfully predicted the pressure drop and resultant temperature changes for the system of air–water along clean and gravel-filled perforations under the steady-state conditions. The presented model in this study can be used as an efficient tool to design the most appropriate perforation strategy with respect to the well characteristics and reservoir properties.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference51 articles.

1. Reservoir Management Through Characterization of Smart Fields Using Capacitance-Resistance Models;Salehian,2018

2. Development of a Dynamic Model for Drilling Fluid's Filtration: Implications to Prevent Formation Damage;Vasheghani Farahani,2014

3. A Systematic Approach for the Prevention and Treatment of Formation Damage Caused by Asphaltene Deposition;Leontaritis;SPE Prod. Facil.,1994

4. An Overview of Formation Damage and Well Productivity in Oilfield Operations: An Update;Krueger,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3