Reservoir Management Through Characterization of Smart Fields Using Capacitance-Resistance Models

Author:

Salehian Mohammad1,Temizel Cenk2,Gok Ihsan Murat1,Cinar Murat1,Alklih Mohammad Y.3

Affiliation:

1. Istanbul Technical University

2. Aera Energy LLC-EBS

3. ADNOC

Abstract

Abstract Use of smart well technologies to improve the recovery has caught significant attention in the oil industry in the last decade. Capacitance-Resistance (CRM) methodology is a robust data-driven technique for reservoir surveillance. Reservoir sweep is a crucial part of efficient recovery, especially where significant investment is done by means of installation of smart wells that feature inflow control valves (ICVs) that are remotely controllable. However, as it is a relatively newer concept, effective use of this new technology has been a challenge. In this study, the objective is to present the efficient use of ICVs in intelligent fields through the integrated use of capacitance-resistance modeling and smart wells with ICVs. A standard realistic SPE reservoir simulation model of a waterflooding process is used in this study where the smart well ICVs are controlled with conditional statements called procedures in a fully commercial full-physics numerical reservoir simulator. The simulation data is utilized to build the CRM model to obtain the inter-well connectivities at the zonal level beyond only the inter-well connectivity data as smart wells provide control and information on the amount of injection into each layer or zone. Thus, after analyzing the CRM model to detect the inter-well connectivities at the zone/layer-level in an iterative way, the optimum injection not only at the well level but also at the perf/zone level is found. The workflow is outlined as well as the improvements in the results. The smart well technology has been challenged with the associated cost component thus, it is important to present the benefits of this technology with applications in more diverse cases with different workflows. It has been observed that a robust reservoir characterization in an intelligent field can provide an insight into the physics of reservoir including smart wells with ICVs. The results are presented in a comparative way against the base case to illustrate the incremental value of the use of ICVs along with key performance indicators. Most importantly, it has been shown that smart well use without a robust reservoir management strategy does not always lead to successful results. In reservoir management, it is not only important to catch the well level details but also see the big picture at the field level to improve the performance of the reservoirs beyond individual well performances taking into account the interference between wells. This method takes the reservoir surveillance to the next level where reservoir characterization is improved using smart field technologies and capacitance-resistance modeling as a robust cost-effective data-driven method.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3