Heat Transfer Enhancement Due to Cold Cap Motion from Bubbling in a Waste Glass Melter

Author:

Guillen Donna P.1,Abboud Alexander W.1

Affiliation:

1. Idaho National Laboratory , 995 MK Simpson Boulevard, Idaho Falls, ID 83415

Abstract

Abstract In this study, a computational fluid dynamics (CFD) model was developed to model the motion of a solid cold cap in a waste glass melter. Forced convection bubblers at the base of the melter release air into the molten glass, which forms large bubbles that travel upward to the cold cap and augment heat transfer from the glass to the cold cap. The CFD model employs the Navier–Stokes equations to solve for the fluctuating flowfield using a rigid body motion dynamic fluid body interaction module. This allows for movement of the floating body in response to the bubbling forces calculated at each time-step. The heat flux delivered to the cold cap by the convective bubbling is studied as a function of the normalized bubbling rate. Results for the moving cold cap are compared with the computed heat flux trends for a stationary cold cap. The heat flux delivered to the cold cap from the molten glass is 25% higher for the case with the moving cold cap as opposed to a stationary cold cap.

Funder

U.S. Department of Energy

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3