A New Approach to Solve Inverse Boundary Design of a Radiative Enclosure With Specular–Diffuse Surfaces

Author:

Mosavati Babak1,Mosavati Maziar2

Affiliation:

1. Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431

2. Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON N9B3P4, Canada

Abstract

Abstract The maintenance of uniform temperature distribution affects the efficiency in most industrial applications. In this study, a novel strategy has been developed for inverse radiative boundary design problems in radiant enclosures with participating medium. This study presents the Backward Monte Carlo method to investigate the inverse boundary design of an enclosure composed of specular and diffuse surfaces. A new optimized Monte Carlo method is proposed to determine the temperature distribution of heaters to achieve desirable prescribed uniform heat flux on the design surfaces. The proposed approach is highly efficient and simple to implement with appropriate results. The evaluated heat fluxes on design surfaces and temperature distribution of heaters are compared with the case where the reradiating walls are assumed to be perfectly diffuse. In the proposed approach, for a specific range of specularity, the absorptivity of the reradiating surfaces does not affect the temperature distribution of heaters. Compared to the diffuse walls, the specular walls have a more uniform temperature distribution and heat flux of heaters. This finding will provide insight into solar furnaces design to enhance temperature uniformity, making specular surfaces suitable in many industrial applications.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3