A Dual Solid Method for Topological Optimization of a Conducting Solid Cooled by Gas Conduction and Surface Radiation

Author:

Sevart Chadwick D.1,Bergman Theodore L.1

Affiliation:

1. Department of Mechanical Engineering, University of Kansas , Lawrence, KS 66044

Abstract

Abstract The topological optimization of a conducting solid simultaneously cooled by (i) conduction to a stationary, radiatively nonparticipating fluid and (ii) surface-to-surface radiation exchange is performed to minimize the overall thermal resistance of the solid configuration. A novel dual solid method (DSM) that utilizes concurrent discrete and continuous descriptions of the solid-phase distribution is introduced. Corresponding discrete and continuous solid models are used to (i) quantify the conduction and radiation heat transfer and (ii) power a density-based topology optimization, respectively. The discrete and continuous models of the DSM are linked by sharing information pertaining to the radiation exchange process. The DSM is the first design method to incorporate the effects of surface-to-surface radiation exchange into the topological optimization of a conducting solid. The influence of the relative strengths of conduction and radiation is illustrated by performing parametric simulations involving various domain boundary temperatures and solid-phase thermal conductivities. In general, use of the DSM to account for radiation heat transfer leads to solid shapes with lower overall thermal resistances and reduced complexity, relative to shapes predicted when radiation is neglected. For the problem considered here, the DSM produces solid shapes that have overall thermal resistances up to 25% smaller relative to overall thermal resistances of shapes determined by topology optimization considering conduction processes only.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3